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omputation of Eigenvalues and
igenvectors of a Mistuned Bladed
isk Via Unidirectional Taylor
eries Expansions

lok Sinha
rofessor of Mechanical Engineering
he Pennsylvania State University,
niversity Park, PA 16802

his paper deals with the computation of eigenvalues and eigen-
ectors of a mistuned bladed disk. First, the existence of deriva-
ives of repeated eigenvalues and corresponding eigenvectors is
iscussed. Next, an algorithm is developed to compute these de-
ivatives. It is shown how a Taylor series expansion can be used to
fficiently compute eigenvalues and eigenvectors of a mistuned
ystem. Numerical examples are presented to corroborate the va-
idity of theoretical analysis. �DOI: 10.1115/1.3142863�

Introduction
Natural frequencies and mode shapes are computed by solving

he following eigenvalue problem:

Kv = �Mv �1�

here K and M are the symmetric stiffness and mass matrices of
he bladed disk, respectively. And, � and v are the eigenvalues and
igenvectors of the system, respectively. For a perfectly tuned
ystem, the number of repeated eigenvalue sets equals �n−1� /2
nd �n−2� /2 for odd and even numbers of blades n. This also
mplies that the number of unrepeated eigenvalue sets equals 1
nd 2 for odd and even numbers of blades n. For odd n, the
igenvector corresponding to the unrepeated eigenvalue represents
deg interblade phase angle tuned mode. For even n, the eigen-

ectors corresponding to unrepeated eigenvalues represent 0 deg
nd 180 deg interblade phase angle tuned modes.

For repeated eigenvalues, eigenvectors are not unique. If vi and
j are two independent eigenvectors corresponding to a repeated
igenvalue �0,

K��vi + �v j� = �0M��vi + �v j� �2�

n other words, any linear combination of vi and v j is also an
igenvector.

Let �K and �M be the perturbations in mass and stiffness
atrices due to mistuning:

�Kt + �K�v = ��Mt + �M�v �3�

here Kt and Mt are the stiffness and mass matrices of the per-
ectly tuned system, respectively. Because of perturbations in
ass and stiffness matrices, repeated eigenvalues for the tuned

ystem split and the mistuned system has distinct eigenvalues and
nique eigenvectors. Xiangjun and Shijing �1� commented that the
igenvector corresponding to a repeated eigenvalue is a discon-
inuous function of system parameters. Applying results in Ref.
2�, both eigenvalues and eigenvectors should be analytic with
espect to a parameter on which perturbations of mass and stiff-
ess matrices depend. Zhang and Wang �3� developed an analyti-
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cal approach to compute the derivatives of repeated eigenvalues
and corresponding eigenvectors of a nondefective matrix. One of
their important contributions is to show that there exists a particu-
lar linear combination of eigenvectors vi and v j, which is differ-
entiable. However, with respect to an arbitrary choice of this lin-
ear combination, the eigenvector corresponding to a repeated
eigenvalue is discontinuous as described by Xiangjun and Shijing
�1�. Shapiro �4,5� used a multidimensional Taylor series to com-
pute mistuned eigenvalues. He also showed that the eigenvalue of
a mistuned system is a continuous function of mistuned param-
eters, and it can appear to be discontinuous because of mode
switching. However, none of the cited papers �1–5� has dealt with
the computation of mistuned eigenvectors via the Taylor series
expansion.

For a mistuned bladed disk, one of the main goals is to compute
its natural frequencies and mode shapes. Since natural frequencies
and mode shapes of a tuned system can be calculated from sector
analyses in ANSYS or NASTRAN, it is further desired that the com-
putational algorithm is based on natural frequencies and mode
shapes of a tuned system. To accomplish this task, an algorithm
has been developed in this paper to compute mistuned natural
frequencies and mode shapes on the basis of a Taylor series ex-
pansion, which utilizes the derivatives of eigenvalues and eigen-
vectors. Since there are many parameters that can independently
change in a mistuned bladed disk, it is determined if one can use
a multidimensional Taylor series. It is shown how an unidirec-
tional Taylor series can be used to efficiently compute natural
frequencies and mode shapes of a mistuned system in general. In
addition, the validity of the linearization approach is examined.

2 Derivatives of Repeated Eigenvalues and Corre-
sponding Eigenvectors

Let vi and vi+1 be the two independent eigenvectors of a per-
fectly tuned system corresponding to a repeated eigenvalue �0.
Define

X = �vi vi+1 � �4�
The original choice of eigenvectors may not be differentiable �3�.
Therefore, combinations of these two eigenvectors are described
as

Z = X� �5�

where � is a square matrix of dimension 2 with the following
property:

�−1 = �T �6�
Now from Eq. �1�,

KZ = MZ� �7�
where

� = �0I2 �8�

2.1 Derivatives of Eigenvalues and Identification of Differ-
entiable Eigenvectors. Differentiating Eq. �7� with respect to an
independent parameter r,

�K − �0M�
dZ

dr
+ �dK

dr
− �0

dM

dr
�Z = MZ

d�

dr
�9�

where

d�

dr
= �

d�0,1

dr
0

0
d�0,2

dr
� �10�

T
Premultiplying Eq. �9� by Z ,
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d�

dr
= ZT�dK

dr
− �0

dM

dr
�Z �11�

ubstituting Eq. �5� into Eq. �11�, and using Eq. �6�,

XT�dK

dr
− �0

dM

dr
�X� = �

d�

dr
�12�

ence, the matrices � and d� /dr are obtained by solving the
igenvalue/eigenvector problem �12�.

2.2 Derivatives of Eigenvectors. Substituting Eq. �11� into
q. �9�,

�K − �0M�
dZ

dr
= �MZZT − I��dK

dr
− �0

dM

dr
�Z �13�

he dimension of the null space of �K−�0M� is 2, and indepen-
ent vectors in the null space �6� are columns of the matrix Z.
herefore, a general solution of Eq. �13� can be written as

dZ

dr
= W + ZS �14�

here W is a particular solution of Eq. �13�, and ZS is the homo-
eneous solution where the coefficient matrix S is determined
rom the second derivatives of eigenvalues. Differentiating Eq. �9�
ith respect to r,

�K − �0M�
d2Z

dr2 + �d2K

dr2 − �0
d2M

dr2 �Z + 2�dK

dr
− �0

dM

dr
�dZ

dr

= MZ
d2�

dr2 + 2M
dZ

dr

d�

dr
+ 2

dM

dr
Z

d�

dr
�15�

remultiplying Eq. �15� by ZT,

d2�

dr2 = ZT�d2K

dr2 − �0
d2M

dr2 �Z + 2ZT�dK

dr
− �0

dM

dr
�dZ

dr

− 2ZTM
dZ

dr

d�

dr
− 2ZTdM

dr
Z

d�

dr
�16�

ubstituting Eq. �14� into Eq. �16� and using Eq. �11�,

2S
d�

dr
− 2

d�

dr
S +

d2�

dr2 = U �17�

here

U = ZT�d2K

dr2 − �0
d2M

dr2 �Z + 2ZT�dK

dr
− �0

dM

dr
�W − 2ZTMW

d�

dr

− 2ZTdM

dr
Z

d�

dr
�18�

et sij and uij be elements of matrices S and U in ith row and jth
olumn, respectively. Then, equating off-diagonal elements on
oth sides of Eq. �17�,

s12 =
u12

2�d�0,2

dr
−

d�0,1

dr
� �19�

nd

s21 =
u21

2�d�0,1

dr
−

d�0,2

dr
� �20�

iagonal elements of the matrix S are obtained from the following
ormalization condition:

zi
TMzi = 1 �21�

here zi is the ith column of the matrix Z. Differentiating Eq. �21�

ith respect to r,
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2zi
TM

dzi

dr
+ zi

TdM

dr
zi = 0 �22�

From Eq. �14�,

dzi

dr
= wi + Zsi �23�

where wi and si are ith column of the matrices W and S, respec-
tively. Substituting Eq. �23� into Eq. �22�,

sii = − zi
TMwi − 0.5zi

TdM

dr
zi, i = 1 and 2 �24�

Having obtained the matrix S, the second derivative of eigenval-
ues can be obtained from Eq. �16�.

3 Taylor Series Expansion

3.1 Multidimensional Taylor Series Expansion of an
Eigenvalue. Let �i, i=1,2 , . . . ,�, be � independent random vari-
ables describing �K and �M. Each of these random variables will
have n different values, �i1,�i2 , . . . ,�in in the mistuned system.
Assuming that there is only one random variable �1,

� = �t + 	
j=1

n
��

��1j
�1j +

1

2	
j=1

n
�2�

��1j
2 �1j

2 + 	
i=1

n

	
j=i+1

n
�2�

��1i � �1j
�1i�1j + . . .

�25�

For a mistuned system, it is quite typical to have 	 j=1
n �1j =0.

Therefore, mistuned eigenvalues will depend on second-order
terms in the multidimensional Taylor series expansion �25�. For a
repeated eigenvalue, pure second-order derivatives can be ob-
tained from Eq. �16�, and there will be a need to develop a similar
analytical expression for mixed second-order partial derivatives. It
should be noted that second-order derivatives of mass and stiff-
ness matrices are present in Eq. �16� and also in equation for
unrepeated eigenvalues �7�. While using ANSYS or NASTRAN, de-
rivatives of mass and stiffness matrices with respect to mistuned
parameters may have to be evaluated numerically by finite differ-
ences. In this case, numerical efforts can be quite excessive be-
cause of a large number of second-order terms. Therefore, a uni-
directional Taylor series expansion of an eigenvalue is developed
next.

3.2 Unidirectional Taylor Series Expansion of an Eigen-
value and a Discontinuous Eigenvector. For a single random
variable case, let the mistuning parameters be

�11,�12, . . . ,�1n �26�
Based on the values of these parameters for a mistuned bladed
disk, the following vector in the parameter space can be defined as

p = r� �27�
where

p = ��11 �12 ¯ �1n �T �28�

� = ��11 �12 ¯ �1n �T �29�

r = 
	
i=1

n

�1i
2 �0.5

�30�

Note that � is a unit vector. Then, the derivatives of mass and
stiffness matrices along the vector p can be calculated as follows:

dM

dr
= 	

i=1

n
�M

��1i
�1i �31�
and
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dK

dr
= 	

i=1

n
�K

��1i
�1i �32�

hese derivatives of mass and stiffness matrices are required for
he computation of the derivatives of eigenvalues and eigenvec-
ors. Defining Taylor series expansions of eigenvalues and eigen-
ectors in terms of a perturbation along the vector p:

� = �t +
d�

dr
r +

1

2

d2�

dr2 r2 + . . . �33�

nd

Fig. 1 Model of a bladed disk assembly

Table 1 Elements of

�11 �12 �13 �14 �15

	0.1252 	0.3195 0.1885 0.5637 	0.2069

Table 2 Fourth eigenvector o

−1
104 −8
103 −6
103 −4
103 −2
1

x1 4.1299 4.1430 4.1555 4.1671 4.17
x2 1.3420 1.3178 1.2877 1.2512 1.20
x3 	3.0783 	3.1522 	3.2291 	3.3084 	3.38
x4 	2.8453 	2.9432 	3.0387 	3.1310 	3.21
x5 2.3092 2.1480 1.9790 1.8026 1.61
x6 4.5039 4.4458 4.3847 4.3209 4.25
x7 1.2233 1.1971 1.1772 1.1639 1.15
x8 	3.7061 	3.6716 	3.6307 	3.5834 	3.52
x9 	2.8985 	2.9836 	3.0667 	3.1477 	3.22
x10 1.4280 1.4229 1.4202 1.4203 1.42

Table 3 Fourth eigenvector of a mistu

−1
104 −8
103 −6
103 −4
103 −2
1

x1 4.1474 4.1551 4.1629 4.1706 4.17
x2 1.4260 1.3724 1.3188 1.2652 1.21
x3 	3.0648 	3.1460 	3.2271 	3.3082 	3.38
x4 	2.8985 	2.9794 	3.0602 	3.1411 	3.22
x5 2.3951 2.2019 2.0087 1.8155 1.62
x6 4.5336 4.4641 4.3946 4.3251 4.25
x7 1.1370 1.1412 1.1454 1.1496 1.15
x8 	3.7819 	3.7196 	3.6573 	3.5950 	3.53
x9 	2.9264 	3.0017 	3.0770 	3.1523 	3.22
x10 1.3918 1.3993 1.4067 1.4142 1.42
ournal of Turbomachinery
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v = vt +
dv

dr
r +

1

2

d2v

dr2 r2 + . . . �34�

Eigenvalues and eigenvectors of the mistuned bladed disk are
computed by substituting the value of r, Eq. �30�, in Eqs. �33� and
�34�. It should be noted that �t and vt are the eigenvalue and the
eigenvector of the tuned system, respectively. In the case of a
repeated eigenvalue, vt is a differential eigenvector obtained from
the solution of Eq. �12�.

4 Numerical Results
The model shown in Fig. 1 considers only one mode of vibra-

tion per blade �7�. Modal mass and stiffness of each blade are
represented by mt and ki, respectively. The phenomenon of mis-
tuning has been simulated by considering the variations in modal
stiffnesses only. The structural coupling between adjacent blades
due to the disk flexibility is represented by Kc. Also, i+1=1 when
i=n, and i−1=n when i=1. Mistuning parameters are as follows:

�1i = ki − kt, i = 1,2, . . . ,n �35�

The mass mt and stiffness of the tuned system kt are 0.0114 kg
and 430,000 N/m, respectively. The coupling stiffness Kc
=45,430 N /m. Using Eq. �12�, differentiable eigenvectors have
been computed for repeated eigenvalues for the unit mistuning
vector �, Table 1. Columns of Table 2 are fourth eigenvectors of a
mistuned system for different values of r, which define the mis-

nit mistuning vector

�16 �17 �18 �19 �110

0.3207 	0.0933 0.2511 	0.3235 	0.4549

mistuned system „r̄=r /2.6407…

r

2
103 4
103 6
103 8
103 1
104

4.1928 4.1973 4.1993 4.1985 4.1949
1.1099 1.0365 0.9651 0.8867 0.8017

	3.5510 	3.6299 	3.7059 	3.7776 	3.8440
	3.3808 	3.4522 	3.5163 	3.5722 	3.6195

1.2330 1.0314 0.8251 0.6149 0.4015
4.1157 4.0437 3.9705 3.8963 3.8215
1.1658 1.1809 1.2032 1.2325 1.2688

	3.4054 	3.3352 	3.2605 	3.1816 	3.0992
	3.3770 	3.4490 	3.5189 	3.5869 	3.6534

1.4382 1.4506 1.4663 1.4856 1.5084

system via linearization „r̄=r /2.6407…

r

2
103 4
103 6
103 8
103 1
104

4.1939 4.2016 4.2094 4.2171 4.2248
1.1044 1.0508 0.9972 0.9436 0.8900

	3.5515 	3.6326 	3.7138 	3.7949 	3.8760
	3.3837 	3.4646 	3.5455 	3.6264 	3.7072

1.2359 1.0427 0.8495 0.6563 0.4631
4.1166 4.0471 3.9776 3.9081 3.8387
1.1622 1.1664 1.1706 1.1749 1.1791

	3.4081 	3.3458 	3.2835 	3.2212 	3.1589
	3.3782 	3.4535 	3.5287 	3.6040 	3.6793

1.4366 1.4441 1.4515 1.4590 1.4665
a u

	

f a

¯

03

74
81
92
93
92
46
74
99
64
32
ned

¯

03

84
16
93
20
23
56
38
27
76
17
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uning vector p, Eq. �27�. Table 3 contains fourth eigenvectors
redicted by linearization, i.e., after neglecting second and higher
erivatives in Eq. �34�. The derivative of the eigenvector has been
omputed from Eq. �23�. Comparing columns in Tables 2 and 3,
he linearized analysis is found to yield fairly accurate results.

Natural frequencies �4 and �5 are plotted as functions of r in
ig. 2. Once again, the linearized analysis yields fairly good pre-
iction of natural frequencies. The first derivative in Eq. �33� has
een obtained via Eq. �12�.

Conclusions
All eigenvectors corresponding to a repeated eigenvalue, in

eneral, are discontinuous functions of mistuning parameters with
espect to a constant interblade phase angle tuned mode. However,
ifferentiable eigenvectors can be uniquely obtained, and unidi-
ectional Taylor series expansions can be used to predict varia-
ions in repeated eigenvalues and corresponding eigenvectors in a
omputationally efficient manner. For typical values of mistuning

Fig. 2 Prediction of �4 and �5 via linear
44501-4 / Vol. 132, OCTOBER 2010

aded 28 May 2010 to 128.113.26.88. Redistribution subject to ASME
parameters of a simple model of bladed disk �Fig. 1�, the linear-
ization method based on this unidirectional Taylor series is found
to be accurate.
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